
A Robotic System for Reaching in Dense Clutter that Integrates Model

Predictive Control, Learning, Haptic Mapping, and Planning

Tapomayukh Bhattacharjee*, Phillip M. Grice*, Ariel Kapusta*, Marc D. Killpack*,

Daehyung Park*, and Charles C. Kemp

Abstract— We present a system that enables a robot to reach
locations in dense clutter using only haptic sensing. Our system
integrates model predictive control [1], learned initial conditions
[2], tactile recognition of object types [3], haptic mapping, and
geometric planning to efficiently reach locations using whole-
arm tactile sensing [4]. We motivate our work, present a system
architecture, summarize each component of the system, and
present results from our evaluation of the system reaching to
target locations in dense artificial foliage.

I. INTRODUCTION

Mason et al. define clutter as “everything that might limit

access to the object” [5], and Merriam-Webster’s dictionary

states that to clutter a place is “to fill or cover with scattered

or disordered things that impede movement or reduce effec-

tiveness” [6]. Research on robotic manipulation in clutter has

looked at a number of problems, including searching for a

visually identifiable object hidden behind sparse clutter [7],

[8], visually inferring which objects to remove from sparse

clutter in order to manipulate a visible object [9], and moving

a cluttered pile of unknown objects into a bin [10].

In this paper, we focus on the problem of enabling a

robot to reach a target in dense clutter. We use the term

“dense clutter” to refer to clutter that results in the following

challenges:

• Physical Challenge: All solutions require contact with

parts of the environment other than the target.

• Perceptual Challenge: Line of sight to the target is

completely occluded and inferring how the environment

will respond to applied forces requires contact.

• Challenge Due to Disorder: No detailed model of the

environment is available prior to encountering the scene.

Humans and other animals readily reach targets in dense

clutter, such as foliage, using haptic sensing. We expect that

robots capable of haptically reaching targets in dense clutter

would perform well in a variety of applications, including

assistive robotics [11].

Many approaches to robotic manipulation are poorly

matched to the challenges of reaching in dense clutter.

For example, methods often rely on collision-free arm mo-

tion, line-of-sight sensing of the volume to be traversed,

or detailed geometric models prior to reaching [12]–[19].

More generally, robotic manipulation research has frequently

*Listed alphabetically
T. Bhattacharjee, P.M. Grice, A. Kapusta, D. Park, and C.C. Kemp are

with the Healthcare Robotics Lab, Georgia Institute of Technology.
M. D. Killpack is now with the Department of Mechanical Engineering,

Brigham Young University.
All work performed at the Healthcare Robotics Lab at Georgia Tech.

Fig. 1: A robot reaches in dense clutter using our system.

emphasized avoiding contact except at the end effector [12],

[13], [20]–[22] or other single point contact locations [23],

[24], which would unnecessarily limit a robot’s actions when

low-force contact is benign.

We present a system that enables a robot to reach target

locations in dense clutter via joint-angle, joint-torque, and

tactile sensing (Fig. 1). Our system first uses computa-

tionally efficient, memory-free greedy reaching followed, if

necessary, by more resource-intensive geometric planning

using a haptic map updated as the robot makes contact

with the environment. A motivating intuition for our work

is the human experience of reaching to a location with little

attention and, upon failing, deliberately reaching with care.

When reaching to 7 distinct target locations in dense

artificial foliage (Figs. 1, 7), our system successfully reached

its target in 16 out of 21 attempts (76.2%). Notably, the

system reached each of the 7 target locations in at least 1 of

its 3 attempts.

II. OVERVIEW OF SYSTEM EXECUTION

As shown in Algorithm 1, the system first performs a

greedy reach using a task-space version of DynamicMPC

that reaches to a 3D target location [1]. DynamicMPC uses

model predictive control (MPC) with a collision model and

a model of the arm’s dynamics to quickly reach to a target

with low contact forces. This first reach starts from an arm

configuration that is likely to result in a successful reach to

the target, as estimated by LIC1, where LIC stands for learn-

ing initial conditions [2]. If this first attempt fails, the robot

performs a second greedy reach from an arm configuration

selected by LIC2 based on the target location, the initial arm

configuration for the first reach, and where the first reach

became stuck. Throughout this process, the system classifies

contact on the arm as leaves or trunk based on tactile sensing

and adds the locations of classified contact to its haptic map

[3], [4]. If the second greedy reach fails, the system begins

Algorithm 1 Integrated System Procedure.

function DYNAMICMPCjoint(ArmPath || JointAngles)
if JointAngles then

⊲ Interpolate from current to goal arm joint angles.
⊲ Maximum ∆q= 1o/step along trajectory.

5: ⊲ Use DynamicMPC to follow given/calculated arm path.
return Bool success

function DYNAMICMPCtask(EndEffectorPosition)
⊲ Use DynamicMPC to reach an end-effector position.

return Bool success

10: function SYSTEM REACH(TargetPosition tp)
CLASSIFYCONTACT.START()
HapticMap h ← MAPCONTACTS.START()
JointAngles qLIC1 ←LIC1(tp)
if ¬DYNAMICMPCJOINT(qLIC1) then return failure

15: if DYNAMICMPCTASK(tp) then return success

Stuck EE Position s ← Current EE Position
LIC1 Start Pose spLIC1 ← FORWARDKIN(qLIC1)
JointAngles qLIC2 ←LIC2(tp, spLIC1, s)
EEPositionPath PathOUT ← REVERSE(PathIN)

20: for GoalPosition gp in PathOUT do
if ¬DYNAMICMPCTASK(gp) then return failure

if ¬DYNAMICMPCJOINT(qLIC2) then return failure

if DYNAMICMPCTASK(tp) then return success

Bool retreated ← False
25: while not at tp do

if ArmPath ap ←PLAN(tp, h) then
if DYNAMICMPCJOINT(ap) then return success

if DYNAMICMPCTASK(tp) then return success

else if ¬ retreated then
30: RetreatPosition rp ← FORWARDKIN(qLIC2)

for n = 0; n < 3; n++ do
DYNAMICMPCTASK(rp)
DYNAMICMPCJOINT(qLIC2)
if at qLIC2 then retreated ← True

35: goto 25
return failure

else return failure
return success

planning. It starts a loop that uses an RRT planner and the

haptic map to try to find a joint-space trajectory to the target

that avoids trunk contact. If the planner succeeds, the robot

attempts to follow the returned trajectory using a joint-space

version of DynamicMPC. If this fails, the robot attempts

another task-space greedy reach before planning again. If

the planner does not return a trajectory, the robot attempts to

greedily pull its arm out of the clutter before planning again.

The system continues this loop until the robot reaches the

target (success), the robot fails to extract its arm from the

clutter (failure), or the planner does not return a trajectory

while the arm is outside the clutter (failure).

III. THE SYSTEM

As illustrated by the block diagram in Fig. 2, our system

integrates a number of components, which we now describe.

A. DynamicMPC

To perform greedy reaching movements, we use a multi-

step model predictive controller that explicitly models the

robot arm’s dynamics and robot-environment contact forces.

Fig. 2: Block diagram of integrated system architecture.

We use a task-space version of this controller that moves the

robot’s end effector to a 3D goal location, as described in

[1] and [25]. We also developed a new joint-space version of

this controller that moves the arm towards a goal joint con-

figuration in order to follow planned joint-space trajectories.

Both versions of the controller move to goals while keeping

predicted contact forces and potential impact forces low.

The ∼1 kHz low-level joint controllers of the Meka M1

arm perform gravity compensation rather than MPC, which

runs at ∼25 Hz. We added an integral control term to the

cost function of both the task-space and joint-space versions

of DynamicMPC to handle gravity compensation errors on

the real robot. The joint-space version of the controller shown

in Fig. 3 uses dgrav , where

dgrav = f(etotal, ecurrent) (1)

and

etotal = ki

t0
∑

t=0

(qgoal − q[t]) (2)

ecurrent = qgoal − q[t0]. (3)

f performs straightforward anti-windup with saturation lim-

its, and only results in a non-zero value for dgrav when the

end effector is within 8 cm of the desired goal location to

avoid overshoot and high forces when the robot is stuck far

from the goal. The integral gain, ki, is also a small value.

The prediction model has four time steps with active

control and four additional time steps during which the

control input is set to zero. The cost function seen in Fig.

3 shows the convex optimization performed by the new

joint-space version of the controller at each time step using

CVXGEN [26]. For this version, we also removed the limit

on the rate of change of contact forces as found in [1] and

[25] to improve computational performance.

minimize
∆qdes

α
∥

∥∆qgoal − (q[t0 +Hu +Hy + 1]− q[t0])− dgrav

∥

∥

2
(4)

+β
t0+Hu
∑

t=t0

N
∑

i=1

max
(

nT
ci
KciJci(q[t+ 1]− q[t0])− (fthreshold −

∥

∥

∥
fmeasured
i [t0]

∥

∥

∥
),0

)

(5)

+κ
t0+Hu
∑

t=t0

N
∑

i=1

max
(

abs(2M(q)q̇[t+ 1])− τmax∆timpact,0
)

(6)

+µ
∑t0+Hu

t=t0
‖∆qdes[t]‖

2
(7)

subject to : (for t = t0 . . . t0 +Hu +Hy)

[

q̇[t+ 1]
q[t+ 1]

]

= Ad[t]

[

q̇[t]
q[t]

]

+Bd[t]

qdes[t]
N
∑

i=1

JT
ci
fmeasured
i [t0]

q[t0]

(8)

qdes[t+ 1] = qdes[t] + ∆qdes[t] (9)

q[t+ 1] ≦ qmax (10)

q[t+ 1] ≧ qmin (11)

abs(∆qdes[t]) ≦ ∆qmax,des (12)

Fig. 3: The altered form of the controller used for joint configuration posture control

Nomenclature

α, β, κ, µ
Scalar weighting terms for the multi-objective cost
function

t0
Current time where state measurements are valid.
Starting point of predictive model

Hu
Number of time steps in the prediction model
where we have control authority

Hy
Number of time steps in the prediction model with
the control input set to zero

∆qgoal Desired change in joint configuration dgrav Error correcting integral term

fthreshold User-defined allowable contact force threshold M(q)
Configuration dependent robot joint-space inertia
matrix

nci Contact normal direction at contact i Kci Cartesian stiffness matrix for contact i

Jci Geometric Jacobian at contact i qmin Minimum joint angle limits

qmax Maximum joint angle limits τmax Maximum allowable torque due to impact forces

∆timpact Time duration of an expected impact q, q̇ State variables of joint angle and velocity

fmeasured
i Measured normal force for contact i qdes

Commanded joint angles that are sent to the joint
impedance controller

∆qdes

Change in commanded joint angles, this is the
output of our MPC

Ad,Bd
Discrete time linear approximations of the system
state space matrices

∆qmax,des

Maximum allowable change in commanded joint
angle

The task-space controller reactively takes advantage of the

4 redundant degrees of freedom (DoF) associated with the

task of achieving a 3-DoF end-effector goal position with

a 7-DoF robot arm. This enables the robot to snake its

arm around obstacles and move rapidly while in contact. In

contrast, the joint-space controller uses a goal configuration

that includes specific target joint angles for all of the robot’s

degrees of freedom. In practice, this allows the controller

to achieve full 7-DoF configurations and track planned arm

trajectories, but greatly reduces the ability of the controller to

move around unexpected contact and increases the likelihood

of the robot becoming stuck.

B. Learned Initial Conditions

The initial condition of a robot reaching into an envi-

ronment can significantly influence its chance of success

[27]. We use a data-driven approach called LIC from [2]

to identify good initial configurations for reaching in clutter.

LIC searches for a good initial condition x∗

0 using a current

situation descriptor and an experience library. It chooses x∗

0

as the initial condition that it estimates is most likely to result

in a successful reach.

In order to learn good initial conditions, we generated

training data using a physics simulation of DARCI reaching

into an environment with rigid, fixed floating spheres. The

training environment contained 60 fixed-floating spheres,

each with a 0.05 m radius, placed in a 0.5 m × 0.9 m ×
0.6 m volume in front of the simulated DARCI robot (Fig.

4). The training was similar to that in [2]. We used 22,684

reaching trials to generate the training data.

We use LIC1 to denote choosing an initial arm configu-

ration for the first reach into a new cluttered environment.

From the first reach, if the robot is not successful, it is

able to obtain observations that can help it choose the

initial arm configuration for the second reach. We use LIC2

to denote the second reach’s method for initial condition

selection, leveraging observations of the environment. LIC2’s

observation list includes the initial condition and the final

Fig. 4: Training environment in a physics simulator, Gazebo
(http://gazebosim.org). Training for LIC is performed in simulation
prior to the real demonstration. We use 60 fixed-floating spheres
with 0.05m radius in front of DARCI to simulate a densely cluttered
environment.

position of the end effector in the first attempt.

C. Haptic Classification

During manipulation in cluttered environments, incidental

contact with objects can be frequent. By incidental contact,

we mean unintentional contact that occurs while performing

a goal-directed manipulation task, as opposed to contact

from active and deliberate haptic probing. Our system uses a

data-driven method from [3] to rapidly categorize incidental

contact into categories relevant to reaching.

Our method uses hidden Markov models (HMMs) to

model the time-series contact force data from the fabric-

based tactile sensor [4] and uses the models to classify

the objects in the environment into the categories of trunk

and leaves. Researchers have used HMMs, in particular,

for various online categorization tasks such as handwriting

recognition [28], human actions [29], and sign language

recognition [30]. Chu et al. have used HMMs for offline

haptic categorization tasks [31] using data from specific

exploratory behaviors. See [32] for a more thorough review

of the large body of work related to haptic classification of

objects using data-driven techniques.

For our system, we trained two HMM models (for trunk

objects and leaf objects) using training data we collected

using the robot Cody [3], on environments wholly composed

of small tree trunks and artificial leaves as shown in Fig.

5. We used a previous controller from [27] for training in

these cluttered environments. Notably, even though Cody

used a different controller and different tactile sensors, we

found that the same HMM models worked well in practice

for DARCI. DARCI and the environment are shown in Fig.

1. Our rapid categorization method classifies, online and in

real-time, the contact force data for every taxel on the tactile

sleeve.

We create a haptic map by mapping the leaf and trunk

contacts encountered, as described in Sec. III-D.1 for the

planner. The visualization only shows the trunk contacts, in

brown (Fig. 6).

D. Planning with Contact

In this section, we describe a global search-based planner

with a haptic-cost map constructed by the haptic classifier

described in Sec. III-C.

Fig. 5: (Left) Trunk-only environment for training the HMM model
for Trunk category; (Middle) Leaf-only environment for training the
HMM model for Leaf category; (Right) Combined environment for
testing.

Fig. 6: Planned robot configuration with a visualization of trunk
contacts in the associated haptic map.

1) The Haptic Map: We first construct a 3D cost map

(haptic map). We represent the workspace of the robot as a

3D voxel grid with 0.01 m × 0.01 m × 0.01 m voxel size in

Cartesian space. Each voxel includes a collision cost associ-

ated with the location. We define the collision-cost value as a

scalar value between 0 to 100. Higher values indicate greater

difficulty for traversal of the location by the robot’s arm. The

haptic classifier from Sec. III-C provides the 3D location and

category of each detected contact while the robot moves. The

system uses this information to continuously update its haptic

map. It assigns collision costs of 50 and 100 for contacts

classified as leaves or trunk, respectively. Open space has a

collision cost of 0. Newly detected leaves and trunk contacts

overwrite the current voxel values. For this implementation,

voxels are never set back to 0. Implementations that allow

the arm’s volume to reduce voxel costs or that decay voxel

costs over time might be valuable for dealing with dynamic

environments and noisy sensing.

The total volume of the haptic map is a rectangular box,

0.6 m × 0.7 m × 0.6 m in front of the robot. The system ini-

tially populates this volume with zeros, using the optimistic

initial guess that the entire unobserved environment is easy

to traverse. The map records the contact information using

the Point Cloud Library’s (PCL) Voxel Grid [33].

2) The Haptic Planner: For our haptic planner, we use

the global, sampling-based planner RRT-Connect [34], as

implemented in OMPL [35]. RRT-Connect attempts to find

an initial trunk-collision free trajectory using a binary map

generated by ignoring any voxel in the haptic map with a cost

<100. Using a cost-based planner instead, might have ben-

efits. If RRT-Connect returns a trajectory, the haptic planner

uses it to produce a simplified and interpolated trajectory.

It then computes a cost for this candidate trajectory by

summing up the costs of all contacts that occur with the

vertices of the arm’s collision mesh as it moves through the

haptic map. If this cost is >1000, equivalent to 10 rigid

(trunk) or 20 soft (leaf) contacts, then the candidate trajectory

is rejected and the planner tries again with a different final

configuration. This threshold allows the robot to try to follow

a trajectory even if it the haptic map indicates that it will

result in some contact.

The haptic planner selects a final configuration for the

arm from a list of valid arm configurations, and then plans

a trajectory from the arm’s current configuration to this

final configuration. Valid final arm configurations are joint

angles that place the end-effector at the 3D target region with

no trunk-collision in the current haptic map. To create the

list of configurations, the system samples 20 random poses

around the target location using uniform random quaternions

described in [36]. Then, using full 6-DoF IK from OpenRave

[37], the system selects a configuration with the minimum

angular distance from current joint angles. Fig. 6 shows an

example of a joint-space goal produced by the haptic planner

for use by the joint-space version of DynamicMPC.

E. Implementation

1) The Tactile Sensor: For tactile sensing, we use our

fabric-based tactile-sensing sleeve from [4]. The sleeve cov-

ers the forearm and end effector of the robot’s left arm with

24 tactile pixels (taxels). The system converts the raw taxel

measurements to approximate normal forces using a non-

linear calibration function.

2) The Robot: We used the humanoid robot DARCI, a

Meka M1 Mobile Manipulator, which includes a mobile

base, a torso on a vertical linear actuator, and two 7-

DoF arms. The mobile base and torso height remained

fixed throughout our evaluation. The left arm had a 3D-

printed cylindrical ABS plastic end effector (visible on our

model in Fig. 6). The arms of the robot use series elastic

actuators (SEAs) at the joints and have a real-time impedance

controller that simulates low-stiffness visco-elastic springs

with additive gravity-compensating torques at the robot’s

joints. Work by other researchers, such as [38], [39], has

demonstrated that joints with low stiffness can lower forces

due to unexpected contact and that the passive mechanical

compliance of SEAs can be advantageous in the presence

of shock loads. Within rigid clutter, low-stiffness joints can

also mitigate jamming and wedging [40], [41].

IV. EVALUATION AND RESULTS

We evaluated the system in the trunk-and-leaf environment

from Sec. III-C by commanding the robot to reach to seven

target locations throughout the environment (Fig. 7). We

defined target locations by placing the robot’s end effector

at the target to ensure that it could be reached. The system

attempted to reach each of the 7 target locations 3 times, for

a total of 21 attempts. After each attempt, we reconfigured

Fig. 7: Trunk-and-leaf test environment. Seven target locations
identified by red dots (#1-#7 in order left to right).

displaced foliage in order to keep the environment substan-

tially the same for each attempt. During testing, the robot

reached each target successfully at least once.

In total, the robot successfully reached the target location

in 16/21 (76.19%) of the attempts (5/21 failures). It reached

6 of the 7 distinct locations in less than 20 seconds on at

least one attempt. The fastest successful attempt for target

#5 required 70 seconds.

For the successful attempts, the robot took an average total

time of 39.74± 46.00s (mean± std). It succeeded in 9/21

(42.86%) attempts on its first reach using the DynamicMPC

controller from LIC1, which took 10.97 ± 3.87s (mean ±
std). In 1/21 (4.76%) attempts it failed when trying to pull

back after its first reach failed, and in 2/21 (9.52%) attempts

it failed when trying to reach the LIC2 initial configuration.

In 1/21 (4.76%) attempts it succeeded on the second reach

starting from LIC2, which took 21.30s. In 5/21 (23.81%)

attempts it succeeded after using the first planned path based

on the haptic map, which took 67.59 ± 26.77s (mean ±
std). In 1/21 (4.76%) attempts it succeeded after using a

greedy reach starting from the failure point of a third planned

trajectory, which took 177.93s. In 2/21 (9.52%) attempts it

failed when the planner did not return a plan after the LIC2

reach, or after pulling back to the LIC2 setup configuration.

Interestingly, the robot only reached target #5 twice, which

required the longest and 3rd longest reaching times out of all

successful attempts. The robot only reached target #6 once.

The robot had difficulty reaching targets #5 and #6 even

though they were near the robot and mostly obstructed by

ostensibly movable foliage, rather than rigid trunks.

V. DISCUSSION

When the robot only used LIC and DynamicMPC for

a successful reach, it succeeded in 12.00 ± 4.90 seconds

(mean ± std). When the robot also used planning, it suc-

ceeded in 85.98±46.91 seconds (mean±std). As illustrated

by Fig. 8, when our system used planning, it took longer

for it to be successful. This is in part due to the high

efficiency of learned initial conditions and greedy reaching

versus geometric planning and task-space control, but it also

relates to the complexity of the particular reaching task. The

success of LIC1 with DynamicMPC in quickly reaching a

variety of target locations in dense clutter emphasizes the

Fig. 8: Completion time in cases where planning is or is not
required. Whiskers at 1.5·Interquartile Range (IQR), filled outliers
> 1.5 · IQR, open outliers > 3 · IQR.

capability of these modules for operating with clutter without

using a map of the environment. The tactile sensor provides

data of limited size and scope that is immediately relevant

to reaching a target and maintaining low contact forces.

Also, because data is collected while reaching, rather than

performing sensing and mapping in advance, our system

avoids the delays of sensing and planning before acting,

common to the ‘Sense-Plan-Act’ paradigm.

Our results also suggest that planning based on haptic

maps can usefully complement greedy behaviors. For 6 of the

16 successful attempts, the robot used geometric planning. In

5 of the 8 attempts that used planning, the planning system

succeeded using the first plan. In these cases, the end effector

was typically near the target location, but stuck against some

obstacle, and small alterations from the greedy approach

freed the arm to reach the target. In one case, the end-effector

became stuck against foliage intertwined between two plants.

Notably, the maps collected and used by the planner were

sparse compared to maps generated by modern 3D range

sensors and included information about areas not visible to

traditional line-of-sight sensors. This sparsity could enable

faster planning with the trade-off that additional re-plans may

be required as the robot makes contact and maps previously

undiscovered obstacles.

Sequentially trying different methods enables the system

to reach targets quickly when mechanically clear paths are

available, while still finding less direct paths to targets which

are harder to reach. Fig. 9 shows the cumulative success

percentage as the system progresses through the defined

sequence of actions. Our integrated system takes advantage

of the complementary capabilities of the system components.

We were inspired, in part, by the notion that people first

attempt some tasks with immediacy and little preparation,

trying to achieve rapid success. In doing so, people can

gain information about the task that would be difficult to

infer from passive observation. If these initial attempts fail, a

person can then try a slower and more deliberative approach

that may involve further exploration of the situation.

Our system is fallible, as evidenced by the robot’s 5 failed

attempts out of its 21 total attempts. In one case, the system

became stuck when attempting to extract its arm after the

first greedy reach. The current extraction behavior uses the

task-space controller to move the robot’s end effector along

the reverse of the path it took into the clutter. We found this

Fig. 9: Cumulative success percentage as the system progresses
through the process in order. LIC1 and 2 give almost 50% success.
A single planned path brings it to >70%.

extraction method outperformed an extraction behavior we

implemented that attempted use the joint-space controller to

move the robot’s entire arm along the reverse of the joint-

space configuration it took into the clutter. This joint-space

extraction method often became stuck from tracking error

and its inability to navigate around contacts using the arm’s

redundant DoF (Sec. III-A).

The robot failed twice due to being unable to reach the

LIC2-selected arm configuration. The robot attempts to use

the joint-space version of DynamicMPC to follow a linear

trajectory in joint-space from the arm’s configuration after

extraction to the LIC2-selected arm configuration. For one

failure, while reaching to target #6, the robot’s arm became

stuck against the robot’s torso. In the other failure, the robot’s

arm became stuck due to its end effector making contact

with the environment. The current system does not attempt to

become unstuck in these situations, which could potentially

improve the system’s overall performance.

Two other failures resulted from the planner not returning

a plan before the 3 minute timeout. In these cases, the maps

were relatively dense. We did not optimize the planning

algorithm for speed, and it is possible that other methods,

such as trajectory-optimization based planning, could provide

valid paths more quickly and consistently. Likewise, our

current mapping system does not clear out occupied voxels,

even if they’ve subsequently been traversed with little effort.

VI. CONCLUSION

We have presented an integrated robotic system capable

of haptically reaching locations in dense clutter using model

predictive control (MPC), learning, haptic mapping, and

planning. MPC enables the robot to rapidly reach into the

unknown while keeping contact forces low. Learning enables

the robot to reach from good initial arm configurations

and categorize incidental contact based on whole-arm tactile

sensing. Haptic mapping enables the robot to remember

parts of the environment relevant to the task of reaching

(e.g., impassable trunks) and ignore irrelevant clutter (e.g.,

movable leaves). Finally, planning enables the robot to take

advantage of its haptic map and solve reaching problems

with which greedy reaching has difficulty.

In our evaluation, the system successfully reached all 7 tar-

get locations in at least 1 of its 3 attempts. For some attempts,

it succeeded using fast and efficient greedy reaching from

learned initial arm configurations. For other attempts, it only

succeeded after using geometric planning with a sparse map

of locations at which it had detected impassable obstacles

using tactile sensing. These approaches complement one

another. The more efficient greedy reaching system can often

find a solution quickly. However, if it does not, the less

efficient planning system has an opportunity to solve the

problem and benefits from the haptic map generated while

the robot greedily reached to the target.

Acknowledgments: This work was primarily supported

by DARPA M3 Contract W911NF-11-1-603 with additional

support from NSF Award IIS-1150157, an NSF GRFP, and

NIDRR RERC Grant H133E130037.

REFERENCES

[1] M. D. Killpack and C. C. Kemp, “Fast reaching in clutter while reg-
ulating forces using model predictive control,” in Humanoid Robots,

IEEE-RAS International Conference on, Atlanta, GA, USA, Oct. 2013.

[2] D. Park, A. Kapusta, Y. K. Kim, J. M. Rehg, and C. C. Kemp,
“Learning to reach into the unknown: Selecting an initial condition
when reaching in clutter,” in Intelligent Robots and Systems (IROS),

2014 IEEE/RSJ International Conference on, 2014.

[3] T. Bhattacharjee, A. Kapusta, J. M. Rehg, and C. C. Kemp, “Rapid
categorization of object properties from incidental contact with a tac-
tile sensing robot arm,” in Humanoid Robots, IEEE-RAS International

Conference on, Atlanta, GA, USA, Oct. 2013.

[4] T. Bhattacharjee, A. Jain, S. Vaish, M. D. Killpack, and C. C. Kemp,
“Tactile sensing over articulated joints with stretchable sensors,” in
World Haptics Conference (WHC), 2013. IEEE, 2013, pp. 103–108.

[5] M. T. Mason, S. S. Srinivasa, and A. S. Vzquez, “Generality and
simple hands.” in ISRR, 2009, pp. 345–361.

[6] Merriam-Webster.com. (2014) ”clutter”. [Online]. Available: http:
//www.merriam-webster.com/dictionary/clutter

[7] M. Gupta, T. Ruhr, M. Beetz, and G. S. Sukhatme, “Interactive
environment exploration in clutter,” in Intelligent Robots and Systems

(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013,
pp. 5265–5272.

[8] M. R. Dogar, M. C. Koval, A. Tallavajhula, and S. S. Srinivasa, “Object
search by manipulation,” Autonomous Robots, vol. 36, no. 1-2, pp.
153–167, 2014.

[9] S. Panda, A. Hafez, and C. Jawahar, “Learning support order for
manipulation in clutter,” in Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 809–
815.

[10] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz,
“Perceiving, learning, and exploiting object affordances for au-
tonomous pile manipulation,” 2013.

[11] P. Grice, M. Killpack, A. Jain, S. Vaish, J. Hawke, and C. Kemp,
“Whole-arm tactile sensing for beneficial and acceptable contact
during robotic assistance,” in ICORR, 2013 IEEE, Seattle, WA, USA,
Jun. 2013.

[12] L. E. Kavraki and S. M. laValle, Chapter 5: Motion Planning,

Handbook of Robotics, Siciliano, Bruno; Khatib, Oussama (Eds.).
Springer, 2008.

[13] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in Proc. IEEE Int. Conf. on

Robotics and Automation. Citeseer, 2007, pp. 3327–3332.

[14] A. Leeper, K. Hsiao, M. Ciocarlie, I. Sucan, and K. Salisbury, “Arm
teleoperation in clutter using virtual constraints from real sensor data,”
in RSS Workshop on Robots in Clutter: Preparing Robots for the Real

World, 2013.

[15] ——, “Methods for collision-free arm teleoperation in clutter using
constraints from 3d sensor data,” in IEEE Intl. Conf. on Humanoid

Robots, Atlanta, GA, 10/2013 2013.

[16] S. Srinivasa, C. Ferguson, D. Helfrich, D. Berenson, A. Collet, R. Di-
ankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. VandeWeghe,
“Herb: A Home Exploring Robotic Butler,” Autonomous Robots, 2009.

[17] A. Saxena, J. Driemeyer, and A. Ng, “Robotic Grasping of Novel
Objects using Vision,” The International Journal of Robotics Research,
vol. 27, no. 2, p. 157, 2008.

[18] A. Saxena, L. Wong, M. Quigley, and A. Y. Ng, “A vision-based
system for grasping novel objects in cluttered environments,” in
Robotics Research. Springer, 2011, pp. 337–348.

[19] A. Hornung, M. Phillips, E. G. Jones, M. Bennewitz, M. Likhachev,
and S. Chitta, “Navigation in three-dimensional cluttered environments
for mobile manipulation,” in Robotics and Automation (ICRA), 2012

IEEE International Conference on. IEEE, 2012, pp. 423–429.
[20] J.-C. Latombe, Robot motion planning. Springer Verlag, 1990.
[21] Z. Guo and T. Hsia, “Joint trajectory generation for redundant robots

in an environment with obstacles,” Journal of robotic systems, vol. 10,
no. 2, pp. 199–215, 1993.

[22] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” Robotics, IEEE Transactions on, vol. 26, no. 3, pp.
576–584, 2010.

[23] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger, “Colli-
sion detection and safe reaction with the dlr-iii lightweight manipulator
arm,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International

Conference on. Ieee, 2006, pp. 1623–1630.
[24] A. De Luca and L. Ferrajoli, “Exploiting robot redundancy in collision

detection and reaction,” in Intelligent Robots and Systems, 2008. IROS

2008. IEEE/RSJ International Conference on. IEEE, 2008, pp. 3299–
3305.

[25] M. D. Killpack, “Model predictive control with haptic feedback for
robot manipulation in cluttered scenarios,” Ph.D. dissertation, 2013.

[26] J. Mattingley and S. Boyd, “Cvxgen: a code generator for
embedded convex optimization,” Optimization and Engineering,
vol. 13, no. 1, pp. 1–27, 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s11081-011-9176-9

[27] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp, “Reaching
in clutter with whole-arm tactile sensing,” International Journal of

Robotics Research (IJRR), vol. 32, no. 4, pp. 458–482, April 2013.
[28] U. Garain and B. Chaudhuri, “Recognition of online handwritten

mathematical expressions,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 34, no. 6, pp. 2366–2376, 2004.
[29] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-

sequential images using hidden markov model,” in in Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), 1992, pp. 379–385.
[30] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign

language recognition using desk and wearable computer based video,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 12, pp. 1371–1375, 1998.

[31] V. Chu, I. McMahon, L. Riano, C. G. McDonald, Q. He, J. Perez-
Tejada, M. Arrigo, N. Fitter, J. C. Nappo, T. Darrell, and K. J. Kuchen-
becker, “Using robotic exploratory procedures to learn the meaning
of haptic adjectives,” in Proceedings of International Conference on

Robotics and Automation, 2013.
[32] T. Bhattacharjee, J. M. Rehg, and C. C. Kemp, “Haptic classification

and recognition of objects using a tactile sensing forearm,” in IEEE

International Conference on Intelligent Robots and Systems (IROS),
October 2012, pp. 4090 – 4097.

[33] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[34] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Robotics and Automation, 2000. Pro-

ceedings. ICRA ’00. IEEE International Conference on, vol. 2, 2000,
pp. 995–1001 vol.2.

[35] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[36] K. Shoemake, “Uniform random rotations,” in Graphics Gems III,
D. Kirk, Ed. Academic Press, 1992, pp. 124–132.

[37] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Tech. Rep., 2008.

[38] G. Pratt and M. Williamson, “Series elastic actuators,” in IROS, 1995.
[39] S. Buerger and N. Hogan, “Complementary stability and loop shaping

for improved human–robot interaction,” Robotics, IEEE Transactions

on, vol. 23, no. 2, pp. 232–244, 2007.
[40] P. Dupont and S. Yamajako, “Jamming and wedging in constrained

rigid-body dynamics,” in Robotics and Automation, 1994. Proceed-

ings., 1994 IEEE International Conference on. IEEE, 1994, pp.
2349–2354.

[41] M. Mason, Mechanics of robotic manipulation. MIT Press, 2001.

